Nous nous intéressons dans cet article à la fouille visuelle de données temporelles, où les données ont été mises sous la forme de n attributs dont les valeurs sont enregistrées pendant k instants. Après un état de l'art sur les différentes approches de visualisation de telles séries, nous présentons plus particulièrement une approche ayant reçue encore peu d'attention ("DataTube"). DataTube place les données dans un tube dont l'axe représente le temps. Nous étendons ensuite cette approche : tout d'abord nous définissons plusieurs modes de visualisations (couleurs, formes, etc) et nous ajoutons un axe temporel. Ensuite nous introduisons des interactions avec la possibilité de sélectionner des attributs et des instants, afficher des données complexes ou encore insérer des annotations sur la visualisation. Nous ajoutons une étape de classification non supervisée afin de regrouper dans la visualisation les attributs similaires. Enfin nous intégrons cette visualisation dans notre plateforme de fouille de données en réalité virtuelle VRMiner, avec un affichage stéréoscopique et des possibilités de navigation interactive. Nous appliquons cette visualisation sur plusieurs ensembles de données réelles et nous montrons qu'elle peut gérer jusqu'à 1,5 million de valeurs. Nous présentons également une évaluation utilisateur.